Convergence of Multiple Ergodic Averages for Some Commuting Transformations

نویسنده

  • NIKOS FRANTZIKINAKIS
چکیده

We prove the L convergence for the linear multiple ergodic averages of commuting transformations T1, . . . , Tl, assuming that each map Ti and each pair TiT −1 j is ergodic for i 6= j. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the same for commuting transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of multiple ergodic averages along cubes for several commuting transformations

In this paper, we give the convergence result of multiple ergodic averages along cubes for several commuting transformations, and the correspondant combinatorial results. The main tools we use are the seminorms and “magic” extension introduced by Host recently.

متن کامل

Convergence of Polynomial Ergodic Averages of Several Variables for Some Commuting Transformations

Furstenberg’s theorem corresponds to the case that pij(n) = n for i = j, pij(n) = 0 for i 6= j and each Ti = T i 1. In this linear case, Host and Kra [HK1] showed that the lim inf is in fact a limit. Host and Kra [HK2] and Leibman [Le2] proved convergence in the polynomial case assuming all Ti = T1. It is natural to ask whether the general commuting averages for polynomials in Theorem 1.1 conve...

متن کامل

Pointwise Convergence of Some Multiple Ergodic Averages

We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...

متن کامل

Norm Convergence of Multiple Ergodic Averages for Commuting Transformations

Let T1, . . . , Tl : X → X be commuting measure-preserving transformations on a probability space (X,X , μ). We show that the multiple ergodic averages 1 N PN−1 n=0 f1(T n 1 x) . . . fl(T n l x) are convergent in L2(X,X , μ) as N → ∞ for all f1, . . . , fl ∈ L (X,X , μ); this was previously established for l = 2 by Conze and Lesigne [2] and for general l assuming some additional ergodicity hypo...

متن کامل

Pointwise Multiple Averages for Systems with Two Commuting Transformations

We show that for every ergodic measure preserving system (X,X, μ, S ,T ) with commuting transformations S and T , the average

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008